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Abstract
Hummingbirds and other nectar-feeding, migratory birds possess unusual adaptive traits that offer
important lessons concerning obesity, diabetes and the metabolic syndrome. Hummingbirds
consume a high sugar diet and have fasting glucose levels that would be severely hyperglycemic in
humans, yet these nectar-fed birds recover most glucose that is filtered into the urine.
Hummingbirds accumulate over 40% body fat shortly before migrations in the spring and autumn.
Despite hyperglycemia and seasonally elevated body fat, the birds are not known to become
diabetic in the sense of developing polyuria (glucosuria), polydipsia and polyphagia. The tiny (3–4 g)
Ruby-throated hummingbird has among the highest mass-specific metabolic rates known, and loses
most of its stored fat in 20 h by flying up to 600 miles across the Gulf of Mexico. During the
breeding season, it becomes lean and maintains an extremely accurate energy balance. In addition,
hummingbirds can quickly enter torpor and reduce resting metabolic rates by 10-fold. Thus,
hummingbirds are wonderful examples of the adaptive nature of fat tissue, and may offer lessons
concerning prevention of metabolic syndrome in humans.

Recent emphasis on human obesity obscures the fact that
fat cells and the triglyceride energy system provide crucial
functions in animals as diverse as invertebrate worms (C.
elegans)[1], insects including fruit flies (D. mela-
nogaster)[2], bony fish [3], toads (Bufo species), lizards
[4], and birds [5]. Plainly, fat tissue did not originate
merely as a cause of disease in sedentary people. It is part
of an ancient, genetically inherited energy regulatory sys-
tem in most if not all animal species. In many animals,
day length and season strongly affect fat deposition
through mechanisms that involve changes in pineal func-
tion, activation of the sympathetic nervous system, and
changes in sensitivity to peptides such as leptin and neu-
ropeptide Y [6,7]. Studies of seasonal weight gain offer
insights into human obesity, and there may be a seasonal

component in the development of human obesity in tem-
perate regions[8].

The adaptive value of fat in providing energy for work,
reproduction and survival is dramatized in the migratory
energetics of the Ruby-throated hummingbird (Archilocus
colubris), a bird which is familiar to most people who
reside in eastern North America and Central America. The
amount of fat (1–2 g) that would allow a human to climb
about 50 feet is enough for the Ruby-throat to fly across
the Gulf of Mexico, and failure to make the crossing
would mean certain death. This paper will review aspects
of hummingbird energetics and seasonal weight regula-
tion that may be unfamiliar to students of human obesity.
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Biology of the Ruby-throated Hummingbird
The hummingbird family (Trochilidae) includes some of
the smallest and most metabolically active vertebrates,
with the Bumblebee hummingbird weighing under 2.0
grams [9]. At 2.5–4.8 g, the adult Ruby-throated hum-
mingbird weighs much less than the common shrew and
a little more than a U.S. penny (2.5 g). During mid-sum-
mer, females average about 3.3 g compared to 3.0 g for
males [9]. Both genders contain an average of about 21%
body fat (0.47–0.58 g) when not migrating [10]. The
higher body weights are observed just prior to migration
when the birds stop nesting and feed actively. The birds
gain an additional ~1.7 g of fat and double their percent
body fat prior to migration [11]. A. colubris spends the
winter in Central America and migrates to North America
for the breeding season, going as far north as Ontario,
Canada (Fig. 1). The total trip may exceed 2000 miles, and
is reversed in the fall. The migrations are timed to coincide
with the blossoming of several flowering plants, which
provide nectar that fuels much of the journey. Nectars
contain as much as 38% (~1 M) sugars (mostly sucrose)
[12,13]. After fasting overnight, hummingbirds primarily
metabolize free fatty acids and have a respiratory quotient

(RQ) of about 0.7. However, the RQ quickly goes to about
1.0 when they begin to feed, indicating oxidation of car-
bohydrate [14,15]. During the breeding season, males
maintain an extremely accurate body mass by ingesting
small meals roughly every 15–20 min, and using the
energy to court females and chase away other males [16].
Just before nightfall, they consume enough nectar to last
the night; when that fails, they may enter torpor to con-
serve energy [15,17].

Hummingbirds have one of the highest metabolic rates
relative to metabolic body size of any animal on earth.
Heart rates up to 1260 beats per minute have been
recorded, and breathing rate is about 250 breaths per
minute even at rest. Resting body temperatures are about
39°C [9]. At rest, oxygen consumption is about 4 ml O2/
g/h [18]. During flight, hummingbird oxygen consump-
tion per gram of muscle tissue is approximately 10 times
higher than that seen for elite human athletes [19].

Preparation for migration requires that the birds switch
from carbohydrate to fat metabolism during flight, and
this entails changes in feeding behavior, energy storage

Approximate wintering range and breeding range of the Ruby-throated hummingbirdFigure 1
Approximate wintering range and breeding range of the Ruby-throated hummingbird. Arrow indicates a probable migratory 
pathway from Yucatan to the southern U.S.
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and mitochondrial energy usage. During periods of rapid
fattening, hummingbird RQ values are above 1.0, consist-
ent with lipogenesis or at least fat storage. The mecha-
nisms of fattening include increased energy intake,
increased food efficiency, altered diet selection, and
increased lipogenic enzymes [20]. Preferential metabo-
lism of carbohydrate spares lipids for storage. Humming-
birds do eat insects and they may increase insect
consumption prior to migration [21,22].

Hummingbirds [13,23] and many other birds [5,24]
maintain very high blood glucose both in the fasted and
fed conditions. In hummingbirds, fasted glucose is about
17 mM (300 mg/dl), and it increases to about 42 mM
(740 mg/dl) after feeding [23,25]. Although these levels
would be classified as diabetic in humans, nectivorous
birds do not become diabetic [13,26] in the traditional
sense of spilling glucose into the urine with symptoms of
polyuria, polydipsia and polyphagia. Also, they do not
develop the degree of glycated hemoglobin seen in
humans [23]. Migrating birds may become insulin resist-
ant and there may be a parallel to human metabolic syn-
drome [27]. However, the birds are forced to switch from
almost total reliance on carbohydrate to almost total reli-
ance on fatty acid metabolism during migration over
oceans or desert terrain that provides no other energy
sources.

Hummingbird Energetics: Across the Gulf of 
Mexico on a Gram of Fat
During the northward migration, many ruby-throated
hummingbirds reach the Gulf of Mexico on the coast of

Yucatan. The distance to the U.S. can equal 500–600
miles, and the most direct routes provide no sites at which
food or water may be obtained. Whereas some birds may
take a coastal route or possibly fly to Cuba, ornithologists
believe that most birds fly non-stop across the Gulf of
Mexico [9]. Networks of bird-watchers report data on var-
ious species during the migrations, and it is noteworthy
that arrivals may be reported in Louisiana and Florida
prior to arrivals in Texas (Fig. 2). Males arrive in the U.S.
prior to the females, and time is critical because the birds
compete for habitat. A premium may be placed on early
arrival because it provides selective advantage in breeding.
Prior to departing, the birds must store enough energy to
fly at speeds that range from 25–50 mph.

Pearson [28] measured oxygen consumption of 2 species
of hummingbird during hovering flight and found values
of 68–85 ml O2/g/hr. He calculated a flight range of 385
miles on the assumption that the birds stored 1 g of fat
and consumed 80 ml O2/g/hr (caloric equivalent of 4.69
kcal/l) when flying at 50 mph. However, Odum et al [11]
showed that Ruby-throated hummingbirds can store
more than 40% of body weight as fat, and found a mean
content of fat of 2.25 g in birds accidentally killed at tele-
vision towers. Lasiewski [29] showed that the metabolic
rate is probably lower (42 cc.O2/gm/hr) than Pearson esti-
mated. Assuming a flight speed of 25 mph, he estimated
that males have a flight range of about 650 miles while
females have a range of about 610 miles. The highest esti-
mate of flight range for the Ruby-throated hummingbird
is about 2500 km (1500 miles) [11].

First Spring sightings of Ruby-throated hummingbirds in 2005 occurred during February in Louisiana and Florida (arrows) before the birds had been reported in TexasFigure 2
First Spring sightings of Ruby-throated hummingbirds in 2005 occurred during February in Louisiana and Florida (arrows) 
before the birds had been reported in Texas. Source: Hummingbirds.net http://www.hummingbirds.net/map.html#south.
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If one assumes an average flight weight of 3.5 g and a
caloric equivalent of 4.69 kcal/l, then the energy needed
for crossing the Gulf of Mexico is about 0.7 kcal per hour.
A 20 hour crossing would require about 14 kcal, or 1.5 g
of fat (1.8 g of fat tissue assuming that fat tissue contains
7.7 kcal/g). If the birds were to rely on glycogen for this
energy, they would need to store about 3.5 g of carbohy-
drate. Adding 2 g of water of hydration for each g of gly-
cogen, the birds would have to increase their body weight
to above 10 g! The flight is possible only because the
energy yield per gram of fat is 10 fold higher than for
hydrated glycogen [19]. If they relied on glycogen, it is
unlikely that the birds could generate sufficient lift to
leave Yucatan, much less carry the extra weight across the
Gulf of Mexico [22].

Conclusion
Migrating birds stay lean until pre-migratory fattening
becomes necessary, and then may add fat at a rate of 1–
13% of body weight per day [27]. For Ruby-throated hum-
mingbirds, the fattening is crucial for survival. The average
"field metabolic rate" is about 8 times resting metabolic
rate [30], and during constant flight, hummingbirds
expend about 0.7 kcal/hr [18,29]. Glucose at 42 mM dis-
tributed in blood and extracellular fluid (20% of body
weight) would provide 6 mg of glucose (24 calories or 100
J). This is sufficient only for a few minutes of flight. The
birds would quickly shift to metabolism of glycogen and
fatty acids to provide adequate energy. Thus, the pre-
migratory fattening is purposive, and a typical flight
across the Gulf of Mexico will require about 75% of the
birds' energy stores (assuming that 1.5 g of fat is used out
of ~2.0 g stored).

The first lesson that the Ruby-throated hummingbird
teaches is that becoming fat can be beneficial if it is neces-
sary as an energy buffer to survive. The second lesson is
that fat birds with very high plasma glucose levels do not
become diabetic. Part of the preventative mechanism is
anatomical and physiological. Nectar feeding birds are
unusual in that they consume large amounts of water
along with the sugars they typically consume [26]. Birds
have a relatively low glomerular filtration rate and are able
to reabsorb essentially all of the glucose that is filtered
into the urine [26]. It is not clear how they avoid showing
symptoms of "glucose toxicity" such as glycated hemo-
globin, but the levels of hemoglobin A1c are lower than in
humans [23]. One hypothesis could be that the turnover
rates of red blood cells and proteins are substantially
higher in birds than in mammals. For example, the
lifespan of red blood cells in birds can be 21 days or less
vs. about 120 days for humans[31], so there may be less
opportunity for glycation. Turnover rates for metabolic
pools are thought to be proportional to body mass to the
1/4 power [32], which would indicate that metabolic

pools exchange about 12 times faster in hummingbirds
than in humans (Kleiber, p. 216 and 390). This is congru-
ent with the high ATP turnover rate in active muscle [33].
Whether or not birds avoid obesity and diabetes by dint of
their rates of living, the neurobiology and endocrinology
of avian fat deposition are complex, and students of
migratory birds have suggested that they could offer
important clues concerning prevention of obesity and dia-
betes in humans [26,27].

Diabetes and the metabolic syndrome are rightfully con-
sidered to be kinetic disorders that do not develop unless
several major controls fail. Typically, sensitivity to insulin
and to glucose ("glucose effectiveness") both diminish,
creating insulin resistance [34]. Hepatic glucose produc-
tion may continue (instead of shutting off) even if plasma
glucose and insulin are both elevated. The rate of produc-
tion of insulin by the beta cell must also fail to compen-
sate for the decreased sensitivity [34]. These are
conditions that come about in humans because of seden-
tary habits and obesity [35]. In migrating birds, there may
be a decline in insulin sensitivity, but it is unlikely that
regulation of beta cell function or hepatic glucose produc-
tion becomes abnormal. Hummingbirds combat kinetic
disorders by dint of their highly aerobic lifestyles and
necessity of maintaining close feedback between energy
intake and energy expenditure. Unlike humans who have
"uncoupled" food intake from functional needs, animals
that must flap their wings at 50 beats per second in order
to feed have a hard time staying fat.
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