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Abstract
Background  Carotenoids have been shown to have multiple health benefits, including antioxidant and anti-
inflammatory. The data for the effect of dietary specific carotenoids on biological aging is limited. Our study aims to 
examine the association between dietary carotenoid intake levels and biological aging.

Methods  This cross-sectional study was performed among 27,338 adults from NHANES 1999–2018. Dietary intake 
was assessed through two 24-hour dietary recall interviews. Biological aging indices included allostatic load (AL), 
homeostatic dysregulation (HD), Klemera-Doubal method (KDM), and phenoAge (PA). Multiple linear regression, 
weighted quantile sum (WQS) regression and quantile g-computation (QG-comp) were used to explore the 
associations of single carotenoid and mixed carotenoids with biological aging.

Results  Associations between dietary carotenoid intake levels and biological aging indices were significant among 
adults across the United States. Multiple linear regression showed that most carotenoids were significantly negatively 
correlated with AL (β = -0.017 - -0.011), HD (β = -0.045 - -0.032), KDM (β = -0.984 - -0.471), and PA (β = -0.975 - 
-0.539). Subgroup analysis indicated that male, older individuals, smokers, alcohol drinkers, and less physically active 
individuals are particularly sensitive populations. Meanwhile, WQS regression and QG-comp analyses consistently 
indicated a negative association between mixed carotenoids exposure and four biological aging indices, highlighting 
that lutein/zeaxanthin and β-carotene were responsible for the outcomes.

Conclusions  Increased dietary intakes of various carotenoids were associated with lower biological aging indices, 
which was possibly and mainly driven by lutein/zeaxanthin and β-carotene.

Keywords  Dietary carotenoids, Biological age, National health and nutrition examination survey (NHANES), Mixed 
exposure
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Introduction
Aging is a complex and unavoidable process in which 
various deleterious changes gradually accumulate in 
cells and tissues, ultimately leading to weakness, lack of 
resilience, and increased risk for several major chronic 
diseases [1–3], including cancer [4], cardiovascular dis-
ease [5], metabolic disorders [2], diabetes [6], and neu-
rodegenerative diseases [7]. In turn, the rate or process 
of aging can be equally influenced by disease, but also by 
other factors [8], such as diet [9, 10], health status, etc 
[11]. Because of the complexity of aging, biological age 
estimation facilitates the combining of multiple biomark-
ers into a single latent variable, which can better explain 
the aging process [12]. To date, a variety of biologic age 
based on clinical phenotypic metrics, molecular biology 
metrics, or composite metrics has emerged. Algorithms 
that incorporate information from standard clinical 
parameters have been shown to be among the most accu-
rate in predicting biological aging and the risk of age-
related diseases [13, 14], such as allostatic load (AL) [15], 
homeostatic dysregulation (HD) [16], Klemera-Doubal 
method (KDM) [17], and phenoAge (PA) [18].

Carotenoids are typically colorful C40 tetra-terpe-
noid pigments produced by a variety of plants, bacte-
ria, and fungi, but are not synthesized in animals [19, 
20]. Although more than 1,100 carotenoids are found 
in nature, only a very small number of carotenoids play 
a role in the human diet [21, 22]. The six major carot-
enoids that are most abundant in the diet are α-carotene, 
β-carotene, β-cryptoxanthin, lycopene, lutein, and 

zeaxanthin, and account for 95% of the carotenoids 
found in American blood and brain [23, 24]. It has been 
suggested that these carotenoids contribute to optimiz-
ing healthy lifespan: Low intake of these carotenoids has 
been associated with all-cause mortality [25], cardio-
vascular disease [26], oxidative DNA damage [27, 28], 
inflammation, and immune decline [29]. Carotenoids are 
involved in increasing long-term health [24]. However, 
large population-based studies on the effect of intake 
levels of dietary carotenoids on biological aging are still 
limited. Our study provides new evidence for a more 
comprehensive and accurate assessment of the relation-
ship between the nutritional status of various carotenoids 
and aging.

To clarify the specific effects of different carot-
enoid intake on biological aging, we investigated the 
association of total carotene, α-carotene, β-carotene, 
β-cryptoxanthin, lycopene, and lutein with zeaxanthin 
(combined) with several biological aging indices includ-
ing AL, HD, KDM, and PA in the 1999–2018 National 
Health and Nutrition Examination Survey (NHANES).

Materials & methods
Study population
As previously documented and disclosed, NHANES is an 
extensive, nationwide survey performed by the National 
Center for Health Statistics (NCHS), utilizing stratified, 
multistage methodologies to capture exact analysis of 
the health and nutritional state of Americans [30]. We 
utilized cross-sectional data from NHANES 1999–2018 
that encompassed 27,338 individuals who satisfied the 
following criteria: non-pregnant adults (n = 57,540), stan-
dard daily energy intake (800–4200  kcal/d for male and 
500–3500 kcal/d for female) (n = 48,741) [31], possess all 
the components of biological ages (n = 35,367), dietary 
and covariates are complete (n = 27338) (Fig.  1). Before 
the survey, ethical clearance was obtained from the Insti-
tutional Review Board of NCHS, and all participants 
provided the informed consent by signing the necessary 
documents.

Assessment of dietary carotenoids
Two 24-hour dietary recall questionnaires were admin-
istered by NHANES, the first by face-to-face collec-
tion at MEC, and the second by telephone collection 3 
to 10 days later. Dietary carotenoid intakes used in this 
study including α-carotene (mcg/day), β-carotene (mcg/
day), β-cryptoxanthin (mcg/day), lycopene (mcg/ day), 
and lutein + zeaxanthin (mcg/day) were calculated using 
the average of two 24-hour recalls or the reported value 
for participants who completed one 24-hour inter-
view. Finally, the total carotene intake was determined 
by summing up the intake of α-carotene, β-carotene, 
β-cryptoxanthin, lycopene, and lutein + zeaxanthin.Fig. 1  Flowchart depicting the participants’ selection
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Construction of biological aging indices
Biological aging indices were employed to utilize differ-
ent calculation methods and incorporate twelve different 
blood chemistry parameters to measure biological aging, 
including albumin, alkaline phosphatase, C-reactive pro-
tein, total cholesterol, creatinine, glycated hemoglobin, 
systolic blood pressure, uric acid, lymphocyte percent, 
white blood cell count, blood urea nitrogen and mean 
(red) cell volume (Additional file 1: Table S1) [12, 32–34]. 
AL consists of the combined effects of long-term stress 
and life events on an individual’s physiological health and 
is determined by assessing the proportion of biomarker 
values that increase an individual’s risk [15]. In our study, 
the level of risk was determined by considering individu-
als in the highest quartile of the distribution of 11 of the 
12 biomarkers for a given biomarker [35–37]. For the 
biomarker albumin, albumin in the lowest quartile was 
considered to be at risk based on previous studies [38]. 
The resulting AL values range of 0 to 1 was defined as 
the proportion of biomarkers considered ‘at risk’ among 
the 12 biomarkers selected. HD, KDM, and PA were ini-
tially trained on blood chemistry-derived indices using 
NHANES 1988–1994 (NHANES III) data, employing the 
methodology originally outlined by Hastings et al. [33], 
Klemera et al. [17], and Levine et al. [34]. The R pack-
age ‘BioAge’ provides access to the corresponding algo-
rithms and R code at ​h​t​t​​p​s​:​/​​/​g​i​​t​h​​u​b​.​c​o​m​/​d​a​y​o​o​n​k​w​o​n​/​
B​i​o​A​g​e​​​​​. In brief, HD is calculated based on the Mahala-
nobis distance of a set of biomarkers relative to a refer-
ence sample, which can be interpreted as the deviation of 
human physiology from a healthy sample of NHANES III 
participants aged 20–30 years [16]. KDM was calculated 
from a series of biomarker regressions of chronological 
age and can be interpreted as the age at which the aver-
age physiology of NHANES III matches that of a person 
[32]. PA was developed through the analysis of multiple 
factors associated with mortality risks using elastic-net 
Gompertz regression to estimate the risk of death [12]. 
To measure changes in biological aging, the higher the 
AL or HD, the higher the risk of dysregulation of homeo-
stasis and physiological health load in an individual, and 
individuals with higher AL or HD were considered to be 
experiencing accelerated aging. Participants with KDM 
or PA values higher than their actual age were considered 
to be aging faster. All of the above methods have been 
proven to predict disease, disability, and mortality [37, 
39–41].

Assessment of covariates
Potential covariates of our study included age (years), sex 
(male/female), race (Mexican American/non-Hispanic 
White/non-Hispanic Black/other), NHANES cycle (year), 
body mass index (BMI, kg/m2), smoking (yes/no), drink-
ing (yes/no), physical activity status (yes/no), education 

level (below high school/high school/above high school), 
annual household income (< $20,000/$20,000-$55,000/> 
$55,000), daily energy intake (kcal/d), diet condition 
assessed by Alternative Healthy Eating Index (AHEI), ret-
inol intake status (mcg/d), nutrient supplement use status 
(yes/no), self-reported cancer (yes/no), cardiovascular 
diseases (CVD) (yes/no), hypertension (yes/no), and dia-
betes (yes/no). AHEI was derived from the original 
Healthy Eating Index and took into account eleven dif-
ferent food components, which were identified through 
a thorough review of studies [42]. All other covariates 
were gathered from the NHANES questionnaires, as well 
as through laboratory tests and physical examinations. 
More details on the measurement of covariates can be 
found on the NHANES website ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​c​d​c​.​g​o​v​/​n​c​
h​s​/​n​h​a​n​e​s​/​i​n​d​e​x​.​h​t​m​​​​​)​.​​

Statistical analysis
All analyses were performed with R (version 4.3.1), and 
considered sample weights, stratification, and cluster-
ing for the complex survey design. All carotenoid intakes 
were log-transformed to achieve a normal distribution 
[43]. Participants’ characteristics were shown as means 
(95% CI) for continuous variables and percentages (95% 
CI) for categorical variables, respectively. Multivari-
ate linear regression models were utilized to analyze the 
associations of total carotene, α-carotene, β-carotene, 
β-cryptoxanthin, lycopene, and lutein with zeaxanthin 
(combined) with biological aging indices, and we have 
predefined four models. Model 1 was adjusted for age, 
sex, race, and year. Model 2 adjusted for age, sex, race, 
year, BMI, smoking, drinking, exercise, education level, 
and income. Model 3 adjusted for the same variables 
as Model 2 and for energy intake, AHEI, retinol intake, 
and nutritional supplements. Model 4 adjusted for the 
same variables as Model 3 and for self-reported cancer, 
self-reported CVD, self-reported hypertension, and self-
reported diabetes.

Subsequently, the best-fitting dose-response curves of 
the associations of carotenoids with biological aging indi-
ces were subsequently shaped by restricted cubic spline 
(RCS) regression with four knots based on the 5th, 35th, 
65th and 95th percentiles of log-transformed dietary 
carotenoids intake with the median as the reference in 
the model 4.

Moreover, multiple stratified analyses were applied to 
evaluate the possible modifying effects of the following 
factors: age (≥ 60/60), sex (male/female), race (non-His-
panic white/others), BMI (< 30/30), smoking (yes/no), 
drinking (yes/no), exercise (yes/no), education (below 
high school/high school/above high school), income (< 
$20,000/$20,000-$55,000/> $55,000), AHEI (divided into 
three groups based on tertiles), retinol (divided into three 

https://github.com/dayoonkwon/BioAge
https://github.com/dayoonkwon/BioAge
https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
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groups based on tertiles), nutrient supplement (yes/no), 
hypertension (yes/no).

Lastly, the weighted quantile sum (WQS) regression 
and quantile g-computation (QG-comp) models were 
used to assess the associations of the carotenoid mixture 
[α-carotene, β-carotene, β-cryptoxanthin, lycopene, and 
lutein with zeaxanthin (combined)] with biological aging 
indices [44, 45]. The WQS model integrates the effects 
of multiple chemicals into a mixture index through 
quantile scoring and weighting methods, thereby facili-
tating the tests for the association between the mixture 
index and a certain outcome. WQS model applied 1000 
bootstrap samples as the parameter to produce stable 
estimates [44]. The QG-computation analysis extends 
WQS regression by integrating it with g-computation, 
offering the explanatory simplicity and computational 
convenience of WQS regression while avoiding the 
homogeneity assumption regarding the directionality of 
exposure-outcome associations [46]. A P value < 0.05 was 
considered statistically significant, and all statistical tests 
were two-sided.

Results
Basic characteristics of participants according to the 
quartiles of log-transformed total carotene
The characteristics of the participants according to the 
quartiles of log-transformed total carotene are shown 
in Table 1. Participants with higher total carotene levels 
were more likely to be male, older, and drinkers, have 
higher physical activity levels, socioeconomic status, 
energy intake levels, AHEI score, and retinol intake lev-
els, as well as have lower BMI, the prevalence of hyper-
tension, CVD, and diabetes, AL, HD, KDM, and PA.

Relationship between total carotene, α-carotene, 
β-carotene, β-cryptoxanthin and lutein/zeaxanthin and 
biological aging indices
Figure 2 shows the relationship of total carotene and vari-
ous carotenoids with biological age indicators of AL, HD, 
KDM, and PA, we processed the original data of carot-
enoids by log-transformation, and the results indicated 
that total carotene and various carotenoids were signifi-
cantly correlated with biological aging indices, except 
for HD, which showed no significant correlation with 
α-carotene and β-cryptoxanthin.

For total carotene, participants in quartile 4 were 
more likely to have lower AL (β: -0.016, P<0.001), 

Table 1  Baseline characteristics according to log-transformed total carotene quartiles: NHANES, 1999-2018a

Variables Total carotene (N = 27338) P
≤ 3.46
N = 6835

3.46–3.80
N = 6835

3.80–4.08
N = 6835

>4.08
N = 6834

Age, years 42.73(42.07,43.39) 45.58(44.93,46.24) 49.76(49.08,50.43) 49.50(48.73,50.27) 0.045
Male, % 44.20(42.60,45.70) 46.20(44.50,47.90) 49.20(47.70,50.70) 53.40(51.70,55.00) < 0.001
Non-Hispanic white, % 65.70(62.00,69.20) 69.10(66.20,71.80) 70.40(67.50,73.10) 72.20(69.50,74.70) 0.334
BMI, kg/m2 28.98(28.73,29.23) 28.94(28.71,29.18) 28.89(28.61,29.16) 28.43(28.14,28.72) < 0.001
Smoke, % 49.10(47.30,50.90) 45.30(43.20,47.30) 43.40(41.80,45.10) 42.30(40.70,43.90) 0.235
Drink, % 70.30(68.60,72.00) 73.70(71.80,75.50) 74.20(72.40,75.90) 76.70(75.00,78.30) < 0.001
Regular exercise, % 35.10(33.70,36.60) 39.10(37.40,40.90) 41.20(39.40,43.10) 41.90(39.90,44.00) < 0.001
College graduate or above, % 47.00(44.80,49.20) 56.90(54.50,59.30) 62.10(60.10,64.10) 65.80(63.80,67.70) < 0.001
> 55,000 annual household 
income, %

34.50(32.30,36.80) 43.10(40.70,45.60) 47.60(45.70,49.60) 48.30(46.10,50.40) < 0.001

Daily energy intake, kcal/d 1818.05(1794.15,1841.95) 1991.63(1969.03,2014.23) 2123.14(2098.85,2147.43) 2289.52(2264.18,2314.86) < 0.001
Dietary supplements use, % 45.70(43.50,47.80) 53.40(51.40,55.30) 56.20(54.20,58.10) 58.30(56.50,60.10) < 0.001
AHEI score 29.11(28.75,29.47) 30.81(30.43,31.18) 32.89(32.53,33.25) 33.71(33.24,34.19) < 0.001
Retinol, mcg 389.67(378.37,400.97) 433.24(417.11,449.36) 430.37(416.68,444.06) 440.27(428.38,452.17) < 0.001
Self-reported cancer, % 9.10(8.10,10.20) 10.00(9.00,11.20) 9.50(8.60,10.60) 9.50(8.70,10.40) < 0.001
Self-reported hypertension, % 32.30(30.60,34.00) 30.90(29.50,32.40) 29.30(27.70,30.90) 30.50(28.80,32.30) 0.007
Self-reported cardiovascular 
diseases, %

9.90(8.90,11.00) 8.30(7.50,9.20) 7.40(6.60,8.40) 7.70(7.00,8.50) < 0.001

Self-reported diabetes, % 9.50(8.70,10.40) 9.30(8.50,10.20) 9.10(8.10,10.20) 8.40(7.40,9.40) 0.589
Allostatic Load 0.28(0.27,0.28) 0.27(0.26,0.27) 0.26(0.25,0.26) 0.26(0.25,0.26) < 0.001
Homeostatic Dysregulation 1.63(1.61,1.66) 1.58(1.56,1.60) 1.56(1.54,1.58) 1.54(1.51,1.56) < 0.001
Klemera-Doubal Method 40.06(39.45,40.67) 39.77(39.23,40.31) 39.31(38.69,39.92) 39.19(38.55,39.83) < 0.001
phenoAge 45.98(45.28,46.68) 45.96(45.31,46.61) 45.63(44.92,46.34) 45.75(44.98,46.53) < 0.001
aContinuous variables were listed as weighted mean (95% CI). Categorical variables were listed as weighted percentage (95% CI). After adjusting for age, general 
linear models and chi-square tests were conducted to compare continuous and categorical baseline characteristics, respectively
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HD (β: -0.045, P = 0.003), KDM (β: -0.882, P<0.001) 
and PA (β: -0.875, P<0.001). Participants in the high-
est quartile of α-carotene had significantly lower AL 
(β: -0.014, P<0.001), KDM (β: -0.778, P<0.001) and PA 
(β: -0.720, P<0.001) compared with those in quartile 
1. For β-carotene, as well as had significantly lower AL 
(β: -0.017, P<0.001), HD (β: -0.043, P = 0.003), KDM (β: 
-0.984, P<0.001) and PA (β: -0.959, P<0.001) compared 
with those in quartile 1. For β-cryptoxanthin, partici-
pants had significantly lower AL (β: -0.011, P = 0.001), 
KDM (β: -0.471, P = 0.002) and PA (β: -0.539, P<0.001) 
compared with those in quartile 1. For lycopene, partici-
pants had significantly lower AL (β: -0.013, P<0.001), HD 
(β: -0.040, P = 0.025), KDM (β: -0.728, P<0.001) and PA 
(β: -0.563, P<0.001) compared with those in quartile 1. 
Similarly, for lutein/zeaxanthin, participants in the high-
est quartile had AL (β: -0.015, P<0.001), HD (β: -0.032, 
P = 0.024), KDM (β: -0.873, P<0.001) and PA (β: -0.975, 
P<0.001) were significantly lower than quartile 1. (Sup-
plementary Material 1: Tables S2-S7)

RCS analysis investigating the relationship between total 
carotene, α-carotene, β-carotene, β-cryptoxanthin, and 
lutein/zeaxanthin and biological aging indices
For total carotene, α-carotene, β-carotene, 
β-cryptoxanthin, and lutein/zeaxanthin, the linearities 
and dose-response as sociations with biological aging 

indices were flexibly modeled by conducting RCS regres-
sion models (Fig. 3). After multivariate adjustment, total 
carotene exhibited linear relationships with lower AL 
(Poverall < 0.001, Pnonlinearity = 0.107) and KDM (Poverall < 
0.001, Pnonlinearity = 0.090), except for PA (Poverall <0.001, 
Pnonlinearity =0.025). Monotonic and linear relationships 
were observed between α-carotene and AL (Poverall < 
0.001, Pnonlinearity = 0.150), HD (Poverall = 0.006, Pnonlinearity 
= 0.158), and PA (Poverall < 0.001, Pnonlinearity = 0.077), with 
the exception of KDM (Poverall < 0.001, Pnonlinearity = 0.002). 
β-carotene showed linear relationships with AL (Poverall < 
0.001, Pnonlinearity = 0.378), HD (Poverall = 0.002, Pnonlinearity 
= 0.415), and KDM (Poverall < 0.001, Pnonlinearity = 0.053), 
except for PA (Poverall < 0.001, Pnonlinearity = 0.009). Mono-
tonic and linear relationships were found between lyco-
pene and lower AL (Poverall < 0.001, Pnonlinearity =0.402), 
KDM (Poverall <0.001, Pnonlinearity =0.077), and PA (Poverall 
< 0.001, Pnonlinearity = 0.077). With the exception of KAM 
(Poverall < 0.001, and Pnonlinearity = 0.031) and PA (Poverall 
< 0.001, Pnonlinearity = 0.021), lutein/zeaxanthin dem-
onstrated monotonic and linear relationships with AL 
(Poverall < 0.001, Pnonlinearity = 0.378) following multivariate 
adjustment. On the other hand, β-cryptoxanthin exhib-
ited non-linear relationships with AL (Poverall < 0.001, 
Pnonlinearity = 0.107), KDM (Poverall < 0.001, Pnonlinearity = 
0.049), and PA (Poverall < 0.001, Pnonlinearity = 0.026).

Fig. 2  Forest plot of the association of log-transformed total carotene, α-carotene, β-carotene, β-cryptoxanthin, and lutein/ zeaxanthin with biological 
aging indices. The adjustments involved the covariables selected in the model 4 of multiple linear regression model
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Stratification of total carotene, α-carotene, β-carotene, 
β-cryptoxanthin, and lutein/ zeaxanthin in relation to 
biological aging indices
Similar associations were found when extensive strati-
fied analyses were conducted based on the variables of 

interest after controlling for variables. It is noteworthy 
that among participants who were older than 60 years of 
age, male, white, non-obese, smokers, alcohol drinkers, 
less physically active, more highly educated, used sup-
plements, and had lower AHEI scores, the results were 

Fig. 3  Associations between log-transformed total carotene, α-carotene, β-carotene, β-cryptoxanthin and lutein/zeaxanthin with biological aging indi-
ces were evaluated by RCS. The adjustments involved the covariables selected in the model 4 of multiple linear regression model. The pink dotted lines 
indicate the median, the solid blue lines correspond to the central estimates, and the bluish-shaded regions indicate the 95% confidence intervals
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closely related to our main findings. (Additional file 1: 
Tables S8-S31)

Associations of the carotenoid mixtures with biological 
aging indices
WQS regression and QG-computation models were 
applied to investigate the associations between carot-
enoid mixtures and biological aging indices AL, HD, 
KDM, and PA. Contrary to the QG-computation model, 
the WQS regression model requires the assumption for 
the direction of associations. Therefore, based on the 
observation of the multiple linear regression model, the 
negative models of AL, HD, KDM, and PA were con-
structed. As shown in Fig. 4 (A), all four biological aging 
indices were significantly negatively correlated with 
carotenoid mixtures in two models. In WQS regres-
sion model as AL (β: -0.205, P<0.001), HD (β: -0.233, 
P = 0.019), KDM (β: -1.548, P<0.001) and PA (β: -1.585, 
P<0.001), and QG-computation model as AL (β: -0.010, 
P<0.001), HD (β: -0.016, P = 0.013), KDM (β: -0.550, 
P<0.001) and PA (β: -0.503, P<0.001).

In the WQS regression (Fig.  4.B), lutein/zeaxanthin 
and α-carotene emerged as the top two key contribu-
tors significantly influencing both AL and KDM. For 
HD, β-carotene and lycopene were identified as the top 
two carotenoids making the most substantial contribu-
tions, respectively. And for PA, lutein/zeaxanthin and 
β-carotene are considered the top two contributors. The 
weights of each carotenoid determined by QG- compu-
tation calculations differed from the WQS regression 
results (Fig.  4.C). The two carotenoids that contributed 
most to AL acceleration were α-carotene and lycopene. 
The two carotenoids that contributed most to HD accel-
eration were β-carotene and lycopene. The two carot-
enoids that contributed most to KDM were β-carotene 
and α-carotene. The two carotenoids that contributed 
most to PA were β-carotene and lutein/zeaxanthin.

Discussion
The present study examined the relationship between 
dietary carotenoids and biological aging in the gen-
eral adult population using nationally representative 
data from NHANES. Our preliminary findings showed 
that total carotene, α-carotene, β-carotene, β-carotene, 
β-cryptoxanthin, lycopene, and lutein/zeaxanthin were 
significantly negatively correlated with AL, HD, KDM, 
and PA, except for HD, which showed no significant 
correlation with α-carotene and β-cryptoxanthin. Fur-
thermore, similar trends were found in subsequent 
stratification analyses. Similarly, both mixed models 
consistently indicate that carotenoid mixtures have a sig-
nificant negative correlation with the combined effect on 
biological aging, and highlight that high levels of lutein/

zeaxanthin and β-carotene intake may play a crucial role 
in reducing biological aging indices.

Collectively, carotenoids perform a multitude of vital 
biological functions, with antioxidant activity being of 
particular significance for human health [47]. As antioxi-
dants, carotenoids are thought to help protect the body 
from oxidative damage caused by free radicals and reac-
tive oxygen species, which accumulate over time and 
contribute to age-related diseases [48, 49]. Existing evi-
dence suggests a correlation between carotenoid intake 
and reduced oxidative stress [50]. Several of our previous 
studies have found that individuals whose diets are rich in 
antioxidant and anti-inflammatory foods not only show a 
reduced risk of all-cause, cardiovascular disease, and can-
cer deaths, but also are less susceptible to aging [51, 52]. 
A study of 3660 participants from the NHANES cohort 
observed a significant association between total serum 
α-carotene, β-carotene, and β-cryptoxanthin and leuko-
cyte telomere length (LTL): the higher the concentration 
of carotenoids in the blood, the longer the telomeres [53]. 
This result was replicated in a larger setting of the same 
cohort, where serum carotenoids were usually positively 
correlated with LTL [54]. Another cross-sectional study 
of the relationship between dietary carotenoid intake and 
Soluble Klotho (S-Klotho) plasma levels in older adults 
showed that total carotene intake was associated with an 
increase in S-Klotho levels and that there was a signifi-
cant positive correlation between α-carotene, β-carotene 
and lutein/zeaxanthin intake and S-Klotho levels [55]. 
However, large population-based studies on the effect of 
intake levels of dietary carotenoids on biological aging 
are still limited. To date, this study presents a ground-
breaking investigation that provides new evidence for the 
link between dietary carotenoid intake levels and human 
aging. Similarly, consistent results obtained by stratified 
analyses considering confounders support the reliability 
and strength of our findings.

In our baseline observations, we found that partici-
pants with higher total carotene levels were more likely 
to be male and older, have higher physical activity lev-
els, higher income, and education levels, as well as lower 
BMI. This phenomenon is quite interesting. We specu-
late that older individuals may have changing nutritional 
needs and absorption capacities, slower metabolism, and 
a higher risk of chronic diseases, which could lead them 
to pay more attention to healthy eating [56]. Addition-
ally, the higher proportion of males with high intake lev-
els may be due to metabolic and physiological differences 
between genders, which could affect the absorption and 
utilization of carotenoids. Furthermore, individuals with 
higher economic status may be more able to focus on and 
practice healthy lifestyles, such as balanced nutrition, 
more regular exercise, and reduced smoking.
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Not only in the single carotenoid model, our study 
found that α-carotene, β-carotene, β-cryptoxanthin, lyco-
pene, and lutein/zeaxanthin were all negatively associated 
with lower biological aging indices, but mixed expo-
sure analyses presented consistent results. Interestingly, 

for the first time in our study, lutein/zeaxanthin and 
β-carotene were found to be the main contributors. 
Meanwhile, as two mixed exposure analysis models con-
sistently indicate that α-carotene is the primary con-
tributor to AL, demonstrating that α-carotene also plays 

Fig. 4  Forest plot for the associations of the carotenoid mixtures with biological aging indices in the WQS regression and QG-computation models 
(A), and the estimated weights in the WQS regression (B) and QG-computation models (C). Carotenoids were log-transformed and introduced into the 
model, and the adjusted covariates involved the covariates selected for model 4 in the multiple linear regression model
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an important role in reducing biological aging indices. 
Lutein and zeaxanthin are usually considered to be asso-
ciated with visual and cognitive functions. They can be 
taken up by the retina at high concentrations and bind to 
lutein and zeaxanthin proteins, resulting in the formation 
of macular pigment [57]. Whereas lutein and zeaxanthin 
levels in the retina are known to be highly correlated with 
levels of lutein and zeaxanthin in the brain (especially in 
the occipital region), like the retina, the brain is actively 
accumulating lutein [58]. Our present study may pro-
vide new evidence for the discovery of its potential bio-
logical function. It is worth noting that lutein/zeaxanthin 
intake has been decreasing in the United States. Accord-
ing to NHANES, the average intake of lutein/zeaxanthin 
decreased from 2.15  mg/d for men and 2.21  mg/d for 
women in 1987 to 1.58 mg/d for men and 1.76 mg/d for 
women in 2013 [59]. β-carotene is a precursor of vitamin 
A and an antioxidant that inhibits the development and 
progression of cancer. It also exhibits anti-inflammatory 
effects in various animal and cellular models and has 
demonstrated a protective effect against the develop-
ment of a wide range of diseases [60–62]. While previous 
research has indicated that β-carotene may increase the 
risk of lung cancer in certain populations [63], our study 
offers new evidence suggesting that β-carotene could play 
a potential role in biological aging. α-carotene also as the 
main precursor of vitamin A in the human body. Several 
studies have suggested that α-carotene may have more 
important antioxidant properties than other types of 
carotenoids [64, 65]. Thus, we speculate that the signifi-
cant role of α-carotene in driving lower biological aging 
indices may be attributed to its greater potential antioxi-
dant properties.

In addition, in stratified analyses, most of our results 
showed that preliminary findings observed in partici-
pants who were older than 60 years, male, white, non-
obese, smokers, alcohol drinkers, less physically active, 
highly educated, used supplements, and had lower AHEI 
scores were strongly associated with outcomes. This is 
consistent with the results of another study compar-
ing α-carotene, β-carotene, and lutein/zeaxanthin with 
S-Klotho levels [55]. However, we considered a richer 
set of indicators for evaluating biological aging. Previ-
ous studies have shown that dietary carotenoid intake is 
negatively associated with obesity [66]. Thus, our study 
further emphasizes the importance of increasing dietary 
carotenoid intake for health.

The mechanisms by which dietary carotenoids influ-
ence biological aging are unknown. Although chronic 
diseases such as cancer, diabetes, and cardiovascular 
disease affect aging, the underlying association between 
dietary carotenoid levels and aging did not change after 
adjustment for these chronic diseases. Therefore, it is not 
possible to explain this negative association in terms of 

other chronic diseases. Carotenoids have been exten-
sively studied as antioxidants, anti-inflammatory agents, 
immunoprotectors, immunomodulators, cell membrane 
stabilizers, and regulators of apoptosis, as well as cell 
cycle and angiogenesis controllers [67]. In particular, the 
scavenging capacity of carotenoids reduces reactive oxy-
gen species, promotes DNA repair, negatively regulates 
oncogenic transcription, and stimulates some key genes 
encoding antioxidant enzymes [68]. Also carotenoids, as 
lipophilic antioxidants, can avoid iron-dependent lipid 
peroxidation, thus alleviating programmed cell death 
caused by iron death [69]. Although dietary carotenoids 
from fruits and vegetables are partially converted to vita-
min A by the enzyme BCO1, a large portion is transferred 
to several tissues and biological fluids. In these tissues 
and fluids, carotenoids exert direct antioxidant functions 
based on their intrinsic structure or indirect antioxidant 
functions after oxidative modification by BCO2 and 
other enzymatic or non-enzymatic actions [21]. In addi-
tion, it has also been shown that carotenoid intake can 
promote gut health by regulating the balance of gut flora, 
thus having a beneficial effect on the whole, which may 
be related to its systemic anti-inflammatory and antioxi-
dant properties [70].

This study has several strengths. The first is the large 
sample size and rich information on covariates. Second, 
the use of a sophisticated multistage probability sampling 
method ensured that the participants in this study were 
a true reflection of the general population, allowing the 
findings to be generalized across the United States. We 
also considered multiple clinical indicators such as AL, 
HD, KDM, and PA, and used an integrated approach to 
understand the effects of biological aging. In addition, 
multiple potential confounders were carefully adjusted 
for, including lifestyle, dietary factors, and prevalence. 
Finally, multiple statistical models were used in this study, 
which greatly improved the reliability of the conclusions. 
Nevertheless, we recognize some limitations of this study. 
Firstly, this was a cross-sectional observational study, and 
therefore directional causality could not be established. 
Second, important biomarkers of aging, including LTL, 
were not included in this study, and it remains highly 
likely that some confounding factors have not yet been 
considered. Third, although the present study assessed 
total food intake in a detailed manner using two non-
consecutive 24-hour dietary recalls, day-to-day variabil-
ity and recall bias were unavoidable. Fourth, lack of an 
independent population to validate the current findings. 
Finally, intake levels do not equal serum and brain levels 
because provitamin A carotenoids are converted to the 
corresponding retinoid metabolites and absorbed.
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Conclusion
Our study indicated a significant association between 
various dietary carotenoids and biological aging. Higher 
intake levels of dietary carotenoids were found to be 
associated with lower biological aging indices. Among 
them, lutein/zeaxanthin and β-carotene were the major 
contributors, suggesting that further studies on the bio-
logical functions of lutein/zeaxanthin and β-carotene are 
worthwhile. These findings provide additional scientific 
evidence for the relationship between dietary carotenoids 
and biological aging. Further prospective and experimen-
tal studies are urgently needed to validate our results and 
explore possible molecular biological mechanisms.
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