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Abstract 

Background The gut microbiota has been implicated in the onset and progression of Rheumatoid Arthritis (RA). 
It has been proposed that gut dysbiosis impairs gut barrier function, leading to alterations in mucosal integrity 
and immunity. This disruption allows bacterial translocation, contributing to the perpetuation of the inflammatory 
process. Since diet is recognised as a key environmental factor influencing the gut microbiota, nutritional interven‑
tions targeting RA activity are currently being explored. This study aims to investigate whether a dietary intervention 
based on a typical Mediterranean Diet enriched with fermented foods (MedDiet +) can impact the gut microbiota, 
intestinal permeability, and RA‑related outcomes.

Methods One hundred RA patients are being recruited at Unidade Local de Saúde (ULS) Santa Maria in Lisbon, 
Portugal, and randomly assigned to either the intervention (MedDiet +) or the control group. The 12‑week nutri‑
tional intervention includes a personalised dietary plan following the MedDiet + pattern, along with educational 
resources, food basket deliveries, and clinical culinary workshops, all developed and monitored weekly by registered 
dietitians. The control group receives standardised general healthy diet recommendations at baseline. The interven‑
tion’s effects will be assessed by evaluating disease activity, functional status, quality of life, intestinal permeability, 
endotoxemia, inflammatory biomarkers, intestinal and oral microbiota, serum proteomics, and serum glycome profile 
characterisation.

Discussion We anticipate obtaining integrative insights into the interplay between diet, the gut, and RA, 
while also exploring the underlying mechanisms driving these changes. This study, conducted by a multidisciplinary 
research team of registered dietitians, rheumatologists, biologists, and immunologists, aims to bridge the current gap 
between nutrition‑related knowledge and RA.

Trial registration Registered in ClinicalTrials.gov (NCT06758817; date of registry: January 6th 2025).
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Introduction
Rheumatoid Arthritis (RA) is a chronic immune-
mediated disease characterised by inflammation of 
the synovial tissue of joints, which leads to progres-
sive destruction of cartilage and bone, and ultimately 
impacts patients’ functional capacity and quality of life 
[1, 2]. While genetic susceptibility is well-documented as 
a contributing factor in RA development, environmental 
factors are increasingly recognised to be involved in the 
onset and progression of the disease [3].

An imbalance in the composition and function of the 
gut microbiota, referred to as gut dysbiosis, has been 
identified as a key modulator of immune responses and 
an important factor in the development of immune-
mediated disorders [4, 5]. The mechanism whereby this 
may occur is related to the influence of dysbiosis in dis-
rupting the integrity and function of the intestinal barrier, 
as well as mucosal immunity [6, 7]. Increased intestinal 
permeability facilitates translocation of bacteria and their 
components, leading to endotoxemia, results in low-
grade systemic inflammation, increased inflammatory 
biomarkers, and can thus contribute to the inflamma-
tory process [7, 8]. The increased inflammation may take 
place not only at the epithelial level but also systemically, 
affecting the joints and linking intestinal dysfunction and 
rheumatic disorders [9]. Although dysbiosis and gut bar-
rier dysfunction have been described in RA [10, 11], the 
specific ways in which diet could influence the relation-
ship between gut integrity and systemic inflammation in 
RA remain to be fully elucidated.

Over the past few years, evidence has shown that 
patients with RA exhibit significant changes in their 
intestinal microbiota composition compared to healthy 
controls, including a marked decrease in α-diversity [12]. 
In light of these findings, the therapeutic modulation of 
the gut microbiota is being increasingly explored in RA, 
with a particular interest in dietary interventions, as diet 
is recognised as one of the main environmental factors 
influencing intestinal microbiota [13]. Both microbial and 
dietary metabolites have immunomodulatory properties 
that might be beneficial and could help manage immune-
mediated and inflammatory disorders, including RA [14]. 
The relevance of whole dietary patterns, rather than indi-
vidual nutrients, is progressively being addressed in RA, 
with an emphasis on the Mediterranean Diet (MedDiet) 
[6, 15, 16]. In this context, our group has recently shown 
that higher adherence to the MedDiet is associated with 
lower disease activity, lower impact of disease, and lower 
functional disability in RA patients [17].

It is also worth noting that the implications of 
the  microbiota in RA go beyond the gut. Perturbations 
in oral microbiota have been found in individuals at high 
risk for RA [18], and in patients already diagnosed with 

RA [19]. Of interest, epidemiological evidence has linked 
periodontitis with RA, and it is hypothesised that certain 
perioral bacteria may contribute to the shift from health 
to disease by making post-translational modifications 
of proteins, such as citrullination, and thus provoking 
autoantibody production [20, 21]. In line with this, post-
translational modification by glycosylation of circulating 
antibodies has been also described to precede the onset 
of other immune-mediated diseases such Inflammatory 
Bowel Disease [22]. This adds to the possible mecha-
nisms contributing to RA onset and may also play a role 
in RA progression. Therefore, both oral and gut micro-
biota should be explored in integrative study designs.

Overall, when considering nutritional interventions in 
RA, the promotion of a symbiotic microbiota and its con-
sequent influence on intestinal barrier integrity, endotox-
emia and inflammatory biomarkers represents a plausible 
mechanism linking diet to improved clinical outcomes in 
these patients. Accordingly, this trial has been designed 
to investigate the triad of nutrition, intestinal microbiota, 
and RA by assessing the effects of a nutritional inter-
vention specifically designed to enhance gut microbiota 
diversity.

Methods
Study design, setting and aims
This is a single-centre randomised controlled trial, coor-
dinated and implemented at Faculdade de Medicina, 
Universidade de Lisboa (FMUL), Gulbenkian Institute 
for Molecular Medicine (GIMM) and Unidade Local 
de Saúde (ULS) Santa Maria, Centro Académico de 
Medicina de Lisboa (CAML), Lisbon, Portugal. This trial 
is registered in ClinicalTrials.gov (NCT06758817; date of 
registry: January 6th 2025). This trial was approved by the 
ethics committee of CAML (Ref. Nº114/22).

We aim to investigate whether a nutritional interven-
tion based on a MedDiet enriched with fermented foods 
(MedDiet +) may influence disease activity, functional 
status, quality of life, intestinal permeability, endotox-
emia, inflammatory biomarkers, intestinal and oral 
microbiota, serum proteomics and serum glycome.

The first participant was enrolled in July 2023, and 
data collection is anticipated to conclude by the end of 
2025. Currently, the effect of the MedDiet on the Disease 
Activity Score in 28 joints (DAS28) of RA patients is not 
yet known, making it unfeasible to conduct a formal sam-
ple size calculation. Considering the number of poten-
tially eligible RA patients treated at the Rheumatology 
Department at ULS Santa Maria, our recruitment capac-
ity, available funding, and the size of recent published 
studies in this area, a convenience sample of 100 partici-
pants will be recruited.
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Patients meeting eligibility criteria are randomly 
assigned to the intervention MedDiet + (n = 50) or con-
trol (n = 50) groups through an online block randomi-
sation generator. Due to the nature of the trial, the 
participants and the registered dietitians responsible for 
implementing the study are not blinded. However, the cli-
nicians evaluating the clinical outcome measures and the 
researchers performing the laboratory tests are blinded.

Primary endpoint

• Change of DAS28-ESR (Disease Activity Score in 
28 joints calculated with erythrocyte sedimentation 
rate) from baseline to 12 Weeks.

Secondary endpoints

• Proportion of patients achieving:

◦ European Alliance of Associations for Rheumatol-
ogy (EULAR) moderate or good response
◦ DAS28-ESR < 2.6

• Change in DAS28-CRP (Disease Activity Score in 28 
joints calculated with C-reactive protein)

• Change on ultrasound score (32 joints scored 0-3 for 
grey scale and power Doppler)

• Proportion of patients who had a 10% improvement 
in ultrasound score

• Change in Short Form 36 Health Survey Question-
naire (SF36) results

• Change in Health Assessment Questionnaire (HAQ) 
results

• Changes in α- and β- diversity of the gut and oral 
microbiota

• Changes in the relative abundance of Lactobacillus/
Limosilactobacillus and Bifidobacterium species in 
the gut

• Changes in butyrate-producing species in the gut 
microbiota

• Changes in H2S-producing species in the gut micro-
biota

• Change in the lactulose/mannitol ratio
• Change in Endotoxemia measured by TLR4 activa-

tion in reporter cells
• Change in inflammatory biomarkers (C-Reactive 

Protein, CPR; Erythrocyte sedimentation rate, ESR, 
faecal calprotectin)

• Change in serum soluble CD14 (CD14s), lipopoly-
saccharide-binding protein (LBP), and intestinal fatty 
acid binding protein levels (IFABP)

• Change in lipid profile (Triglycerides, Total Choles-
terol, HDL and LDL Cholesterol)

• Change in body composition (Fat Mass, Fat-Free 
Mass, Total Body Water and Body Cell Mass)

• Change in anthropometric measurements (body 
mass index, BMI, and waist circumference)

We will also analyse zonulin levels, serum proteomics, 
and serum glycomics.

Recruitment and eligibility criteria
RA patients diagnosed according to the ACR/
EULAR2010 criteria [23], aged 18 years old or older, are 
invited to participate in this study if eligibility criteria 
are met at their regular follow-up RA consultations. All 
participants sign a written informed consent form before 
any study procedures. Our inclusion criteria are diagno-
sis duration of at least one year, active disease (DAS28-
ESR ≥ 2.6 units), stable medication for at least 12 weeks 
prior to the baseline assessment (including intra-articular 
steroid injections), and a low or medium adherence to the 
MedDiet (defined as a score of < 10 points in the 14-item 
tool by the PREvención com DIeta MEDiterránea trial, 
PREDIMED). Patients requiring therapeutic adjust-
ments and/or intra-articular steroid injections during the 
trial are excluded. Our exclusion criteria are: antibiotic 
therapy within 4  weeks before enrolment; prednisolone 
dose > 7.5  mg/day; persistent use of non-steroidal anti-
inflammatory drugs: diagnosis of inflammatory or irri-
table bowel disease, celiac disease, chronic diarrhoea; 
diagnosis of other immune-mediated or inflammatory 
diseases; major organ dysfunction; cancer diagnosed in 
the last five years; presence of health conditions which 
may impair the ability to consent to study participation 
(cognitive impairment/psychiatric disease). Regarding 
the use of antibiotics, although a general recommenda-
tion for a washout period is challenging to define, accord-
ing to literature, a minimum of 4 weeks since cessation of 
antibiotics is recommended [24] and is considered in this 
trial. The overall diagram flow of the study is shown in 
the SPIRIT figure illustrated in Fig. 1. The SPIRIT check-
list is provided as supplementary material.

Interventions and comparators
MedDiet + group
The intervention is carried out for 12 weeks at ULS Santa 
Maria and includes an educational-based nutritional 
intervention with a structured nutrition plan prescribed 
by registered dietitians, educational food baskets, educa-
tional digital content, and clinical culinary workshops.

At baseline, a personalised nutritional plan is elabo-
rated for each participant, and its implementation is 
closely monitored through weekly follow-up calls and 
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monthly face-to-face appointments to fully involve par-
ticipants and minimise dropout rates. To define an 
adjusted nutritional plan, nutritional requirements are 
individually assessed considering the patients’ nutritional 
status and physical activity level. Energy, as well as pro-
tein, carbohydrate, and lipid requirements are calculated 
in agreement with the European Food Safety Authority 
(EFSA) dietary reference values [25]. The nutritional plan 
includes the number of food portions of each food group 
that participants must consume, in agreement with the 
MedDiet recommendations for the adult population 
[26]. To complement the traditional MedDiet, additional 
advice is provided to promote the consumption of spe-
cific fermented foods that potentially contain probiotic 
microorganisms, vitamins and bioactive compounds, 
such as fermented beverages, including kefir (provided 
for daily consumption) and kombucha (provided for con-
sumption 2x/week). Foods with anti-inflammatory prop-
erties are also recommended, including sources of n-3 
polyunsaturated fatty acids (PUFAs), such as oily fish, 
nuts and seeds, and a high amount of extra-virgin olive 
oil. The intake of vitamins, carotenoids, and phenolic 

compounds is promoted by the consumption of a wide 
variety of fruits, vegetables, legumes, whole grains, nuts 
and seeds, tea and infusions, herbs and spices, and extra-
virgin olive oil. The nutritional plan can be adjusted if 
patients report issues with the consumption of specific 
foods.

Educational food baskets are delivered weekly with 
different typical ingredients of the MedDiet + pattern 
to encourage their inclusion in the patients’ daily meals. 
This strategy ensures that every participant receives the 
same resources to meet the nutritional recommenda-
tions. We have secured a partnership agreement with a 
supermarket chain to overtake logistic aspects. Ingre-
dients such as extra virgin olive oil, whole grains (whole 
grain bread, rice and pasta, oats), fresh fruits and veg-
etables, legumes, nuts and seeds, canned sardines and 
mackerels, herbs and spices, plain yoghurt, kefir, and 
kombucha are being provided.

Educational content consists of video recordings and 
two recipe books to share new ideas for cooking reci-
pes, as well as educational and useful content to help 
participants meet the nutritional recommendations. It 

Fig. 1 SPIRIT figure with standard protocol items of the TASTY trial. The SPRIT figure illustrates key components of the TASTY trial protocol and data 
collection time points from enrolment to the end of the 12 weeks. Abbreviations: Lipopolysaccharides (LPS). *Only in the MedDiet + Group
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intends to empower patients with knowledge of differ-
ent dishes and cooking methods to promote the inclu-
sion of the foods provided in the food baskets. Recipes 
for other fermented foods, such as sauerkraut and sour-
dough bread are also included in the educational content. 
Finally, access to an online clinical culinary workshop is 
provided. The clinical culinary workshop allows for the 
application of the provided nutritional knowledge into 
culinary preparations through the demonstration of reci-
pes and culinary methods.

Control group
At baseline, the control group receives a flyer with gen-
eral recommendations on a healthy diet, based on the 
Portuguese brief guidance for healthy eating in primary 
health care [27]. No food baskets or any of the nutritional 
education strategies are implemented. To promote study 
adherence, a shopping voucher is given to each partici-
pant at the end of the trial. This comparator was cho-
sen to reflect the standard care that could be given by 
clinicians.

Data collection
Sociodemographic and lifestyle data
The participants’ relevant clinical history is collected 
from their electronic hospital records (disease duration, 
current medication, and comorbidities). A structured 
questionnaire was developed to collect patients’ age, sex, 
educational level, menopausal status, smoking status, and 
family history of rheumatic diseases.

Nutritional assessment
Nutritional assessment encompasses four components: 
nutritional intake, dietary pattern characterisation, body 
composition analysis, and anthropometric measure-
ments. Nutritional intake is assessed by a 24-h dietary 
recall (24 h Recall), one of the most widely used tools in 
nutrition surveys to obtain detailed information about 
all food and beverages consumed in the past 24  h. A 
quantitative assessment with portion size quantifica-
tion is included to provide a more comprehensive and 
detailed report. Adherence to the MedDiet is assessed 
with the Portuguese version [28] of the 14-Item Mediter-
ranean Diet Assessment Tool developed by PREDIMED 
study authors [29, 30], in which a maximum score of 14 
points can be achieved, being a strong adherence defined 
by a score ≥ 10 points. Anthropometric measurements 
(height, weight, and waist circumference) are performed 
by registered dietitians. BMI is calculated as weight/
height squared (kg/m2) and bioelectrical impedance 
analysis (BIA) is performed to analyse body composition 

(Fat Mass, Fat-Free Mass, Total Body Water and Body 
Cell Mass). Nutritional assessment is performed at base-
line and at the end of the trial for both groups and every 
month (baseline, 4th, 8th and 12th weeks) for the inter-
vention group.

Clinical outcome measures
The DAS28-ESR and articular ultrasound examination 
of 28 joints are performed to assess disease activity. The 
DAS28 is the most widely used scoring system to deter-
mine disease activity in patients with RA [31, 32] consid-
ering the following items: number of tender and swollen 
joints in 28 joints (shoulders, elbows, wrists, metacar-
pophalangeal joints, hand proximal interphalangeal joints 
and knees); ESR (mm/hr), and a patient global health 
assessment based on a visual analogue scale (VAS-GH, 
range, 0–100). The DAS28-CRP is also being assessed as 
a secondary outcome measure. It encompasses the same 
items as the DAS28-ESR but substitutes the ESR with 
CRP in the formula.

Articular ultrasound examination is performed using a 
GE Logiq E9 equipment with a 6–15 MHz matrix linear 
probe. Doppler ultrasound (DUS) is used to assess the 
vascularisation of the synovial tissue. Ultrasound proce-
dures and grey scale ultrasound (GSUS) and DUS grad-
ing are based on EULAR-OMERACT consensus [33–35]. 
The Doppler parameters are adjusted at the maximum 
sensitivity for slow flow (pulse repetition frequency of 
0.4 kHz, lowest wall filter on 45 Hz, and 7.5 MHz Dop-
pler frequency) with Doppler gain just below the noise 
level. In all patients, the wrists, metacarpophalangeal 
joints, and proximal interphalangeal joints are examined 
with ultrasound. Examinations are performed using a 
standardised dorsal and dorso-lateral scans. Erosions are 
also evaluated by GSUS as defined by the OMERACT 
consensus [36] and a semiquantitative score is used to 
evaluate ultrasound detected erosions [37].

As for patient-reported outcomes, functional sta-
tus and quality of life are evaluated using the HAQ [38] 
and SF-36 short form [39]  questionnaires, respectively. 
The HAQ assesses functional status through a disability 
index, and patient global and pain visual analogue scales 
[38]. The SF-36 includes a multi-item scale that assesses 
various health concepts such as limitations in physical 
activities related to health problems, limitations in social 
activities related to physical/emotional problems, limita-
tions in day-to-day activities due to physical health prob-
lems, pain, mental health, limitations in the day-to-day 
activities because of emotional problems, vitality, and 
general health perceptions [39]. Clinical assessments are 
performed at baseline and after 12 weeks in both groups.
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Oral and Intestinal Microbiota
Saliva samples are collected with a saliva collection kit 
while the faeces are self-collected by the participants with 
the OMNIgene GUT kit. Samples are processed accord-
ing to the standard operating procedure, which defines 
biological samples’ handling, processing, and freezing 
protocols to be preserved at the Biobank-GIMM, CAML.

For cell lysis, three bead beating cycles, in a total of 
3  min of bead beating are included. We use the Ruptor 
Elite (OMNI International) with the following condi-
tions: 1 min on at 6 m/s followed by 5 min rest. The bac-
terial DNA is extracted with the QIAamp PowerFecal Pro 
DNA Kit (Qiagen). Shotgun metagenomics sequencing 
will be performed, generating > 3 million reads per sam-
ple. The sequencing data resulting from the feces samples 
will be processed using the bioinformatics pipeline from 
the Microbiome in Health and Disease Translational 
Laboratory (GIMM), which includes quality filtering 
to remove low-quality reads and sequencing artefacts, 
removal of host DNA reads by mapping to the human 
genome (GRCh38), and elimination of optical duplicates. 
To perform taxonomic classification, a combination of 
k-mer and mapping approaches to a custom-developed 
reference database will be used, which includes a curated 
collection of bacterial and fungal genomes from publicly 
available databases (GTDB, UHGG). Similarly, for func-
tional classification, a combination of k-mer and mapping 
approaches to publicly available functional databases 
such as Uniprot, KEGG, CAZy, and others will be used.

Lipid profile, inflammation and intestinal permeability 
biomarkers
Blood tests are performed to determine the serum lev-
els of the lipid profile biomarkers (Triglycerides, Total 
Cholesterol, HDL and LDL Cholesterol) by standard 
operating procedures, as well as the serum levels of 
inflammatory and disease activity biomarkers (CRP and 
ESR). Although this study protocol encompasses the 
DAS28-ESR as a primary outcome, the serum CRP levels 
are also evaluated due to its high sensitivity for evaluat-
ing short-term inflammation [40]. Faecal calprotectin, 
an established marker of gut inflammation, is being ana-
lysed by a particle-enhanced turbidimetric immunoassay 
(CALiaGold© test).

Serum IFABP, lipopolysaccharide-binding protein 
(LBP) and sCD14 will be evaluated by Enzyme-Linked 
Immunosorbent Assay (ELISA), once data collection is 
completed. IFABP actively participates in dietary lipid 
metabolism by mediating fat absorption through bind-
ing and intracellular trafficking of free long-chain fatty 
acids [41]. Increased serum levels of IFABP, which is also 
a specific biomarker of gut epithelial integrity, have been 
shown in RA patients [42]. LBP, an acute-phase protein 

that carries the ability to bind to LPS [43], has been rec-
ognised as a sensitive serum biomarker for RA disease 
activity, as it significantly correlated with ESR, CRP, ten-
der joint counts, swollen joint counts and DAS28 [44]. 
CD14s is also an acute phase protein whose hepatic pro-
duction is increased in response to interleukin (IL)−6 in 
the setting of inflammation. CD14 stimulates the pro-
duction of other pro-inflammatory cytokines, includ-
ing IL-6, in an amplification loop that participates in 
RA pathogenesis [45]. Furthermore, CD14s has been 
shown to be increased in RA patients and correlate with 
DAS28 score and response to treatment [46]. These bio-
markers, IFABP (serum diluted 1:4), LBP (serum diluted 
1:500), and CD14s (serum diluted 1:15), will be meas-
ured from patient serum by sandwich ELISA (LBP cat. 
DY870; FABP2 cat. DY3078; CD14 cat. DY883; R&D 
Systems, USA), following the manufacturer instructions. 
Horseradish peroxidase conjugate will be detected with 
enhanced chemiluminescence substrate (cat. 32,106, 
Pierce, USA) and measured with a microplate reader 
(BMG Pherastar FS, BMG LABTECH, Germany).

Zonulin, a strong modulator of intestinal intercel-
lular tight junctions, is recognised to play a role in the 
translocation of macromolecules and, consequently, in 
the tolerance/immune response balance [47]. Higher 
serum zonulin levels were shown to be accompanied by 
increased intestinal permeability and, in turn, the disrup-
tion of the intestinal barrier function has been proven 
to occur before the onset of the inflammatory phase of 
murine and human arthritis [48]. Zonulin (serum diluted 
1:10) will be measured from patient serum by sandwich 
enzyme-linked immunosorbent assay (ELISA) (cat. E-EL-
H5560, Elabscience, USA), according to the manufacturer 
instructions. Optical density will be measured with the 
microplate reader (BMG Pherastar FS, BMG LABTECH, 
Germany) set to read the absorbance at 450  nm with a 
wavelength correction set at 540 nm.

All ELISA assays will be performed in High-Through-
put Screening (HTS) mode with reagent and liquid dis-
pensing by the dispenser (CERTUS FLEX Fritz Gyger 
AG, Germany), serum sample dispensing by dispenser 
(ECHO 650, Labcyte, US) or manually, and washes by 
plater washer (EL406, Agilent BioTek, USA). These assays 
will be performed at the Finnish Institute for Molecular 
Medicine Finland (FIMM) High Throughput Biomedi-
cine unit.

Intestinal permeability: lactulose/mannitol test
Intestinal Permeability is assessed through the lactulose/
mannitol (Lac/Man) test, a gold standard for functional 
measurement of intestinal permeability in humans. 
Specific dietary recommendations for the 24  h before 
the test are provided to standardise conditions across 
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participants and reduce variability in results. Although 
there is no consensus for dietary restrictions in this test, 
patients are advised to avoid some foods and beverages 
potentially containing lactulose and/or mannitol [49–51], 
such as dairy products, sweet potato, mushrooms, cau-
liflower, butternut squash, celery, peas, green beans, 
chicory, fennel, kimchi, sauerkraut, peach, watermelon, 
gelatin, gummies, candies, chewing gum, sauces, ‘diet’ 
and ‘light’ food products, artificial sweeteners, dietary 
supplements, soft drinks, and flavoured and alcoholic 
beverages.

After an overnight fast (≥ 8  h), patients are given a 
solution containing 5 g of lactulose and 1 g of mannitol 
and are encouraged to drink 1.5 L of water for 4  h and 
collect all the urine produced during that time. Lactu-
lose and mannitol concentrations are determined by 
ultra-performance liquid chromatography-tandem mass 
spectrometry (UPLC-MS/MS). The lactulose and man-
nitol quantification is performed at Instituto Nacional 
de Saúde Dr. Ricardo Jorge in Lisbon, Portugal. UPLC-
MS/MS and mass spectrometer conditions are further 
detailed in the supplementary material.

Endotoxemia: LPS biological activity
Toll-like receptor 4 (TLR 4) activation reflecting LPS 
bioactivity will be measured, when recruitment has fin-
ished and all samples have been collected, with HEK-Blue 
hTLR4 reporter cells (InvivoGen) engineered to pro-
duce secreted alkaline phosphatase in response to TLR4 
stimulation. The method has been established and vali-
dated for cell-based High Throughput Screening, making 
it appropriate for population cohort sample screening 
[52]. Briefly, 70,000 cells/well will be seeded on a 384-
well plate with 25  μl of cell culture media. Serum sam-
ples (2.5ul) will be added in duplicates to wells to obtain 
a final working concentration of 1% (v/v) per well. To 
determine whether TLR4 activation is due to LPS, we will 
add another set of sample duplicates with 0.1  mg/ml of 
polymyxin B (InvivoGen), an LPS inhibitor. Human AB 
serum 1% (v/v, Sigma-Aldrich) will serve as a negative 
control. A set of standard dilutions will be created with 
LPS-B5 Ultrapure from Eschericia coli O55:B5 (Invivo-
Gen) diluted in endotoxin-free water with 1% Human 
AB serum. After incubation at 37° C for 24 h, we will add 
10ul/well SEAP substrate QUANTI-BlueTM Solution 
(InvivoGen). Following a 6 h incubation at 37 °C, absorb-
ance will be measured with a microplate reader (BMG 
Pherastar FS, BMG LABTECH, Germany). TLR4 activa-
tion due to LPS will be then determined by subtracting 
the activity remaining in the presence of polymyxin B 
from the total TLR4 activation measured. A linear stand-
ard curve will be plotted. The LPS biological activity will 
be performed at the Helsinki University (Finland).

Proteomics
Nowadays, various proteomic techniques are being 
applied to different biological samples, from both RA 
patients and experimental animal models, showing prom-
ise in identifying novel biomarkers and treatment targets 
[53]. In our trial, once all samples have been collected, 
blood serum samples will be studied through micro-liq-
uid chromatography-mass spectrometry (micro-LC–MS/
MS) using a hybrid quadrupole TripleTOF 6600 (Sciex, 
CA, USA). The proteomes will be identified through the 
qualitative shotgun data-dependent acquisition (DDA) 
method [54, 55], and protein levels will be measured 
through the quantitative sequential window acquisition 
of all theoretical mass spectra (SWATH) methods. A 5% 
false discovery rate (FDR) and a p-value ≤ 0.05 will be 
used to filter the dataset. FunRich software 3.1.3 will be 
used to determine proteome enrichment.

Serum Glycome characterisation
When patient recruitment has been concluded, serum 
will be processed and ultra high performance liquid chro-
matography (UHPLC) analysis will be performed using 
hydrophilic interaction liquid chromatography (HILIC) 
chromatography coupled with fluorescence detection 
and online electrospray MS for total serum glycome 
characterisation. From this analysis we will be able to 
identify unique signatures related with plasma proteins 
N-glycans alterations that can be associated with die-
tary intervention. Then, and given the fact that Fc gly-
cosylation of IgG/IgA is a key factor for the definition 
of effector (inflammatory) function of IgG/IgA, we will 
characterise the antibody specific Fc glycosylation of IgG/
IgA at the different time points before and after dietary 
intervention, by advanced glycoproteomics  nano-liquid 
chromatography-electrospray ionization-tandem mass 
spectrometry (nanoLC-ESI–MS). The structural charac-
terisation of the IgG Fc-N-glycans in terms of composi-
tion and abundance will be performed by advanced liquid 
chromatography coupled to mass spectrometry), that 
enables high-throughput analysis of IgG Fc-glycans in a 
subclass-specific manner.

Figure  2 resumes all variables collected during the 
study timeframe.

Data management and statistical analysis
Collected data files in paper format are being securely 
stored in locked filing cabinets within the Nutrition Lab, 
FMUL, CAML, accessible only to authorized team mem-
bers. All recorded data and collected samples are coded, 
and analysis will be performed anonymously. Only mem-
bers of the research team will have access to data and 
samples. FMUL has the property of the resulting data and 
the right to disclose the results as merged data analysis. 
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The Nutrition Lab of FMUL will have access to the final 
trial dataset and will be responsible for storing conserved 
data for five years after the last publication.

Statistical analysis will be conducted using SPSS 
(SPSS® Inc., Chicago, IL) version 28.0 or a subsequent 
updated version. The Normal data distribution will be 
verified using the Kolmogorov–Smirnov tests, consider-
ing the sample size. Depending on the normality of the 
data, parametric or non-parametric tests will be used. A 
p-value of less than 0.05 will be considered statistically 
significant. Descriptive statistics will be used to describe 
all variables, both by groups (intervention vs. control) 
and by timing (baseline and final visits). Characteristics 
between groups at baseline will be compared to iden-
tify significant differences that may confound results. To 
access differences between the baseline and the end of 
the intervention (paired sample test) as well as between 
groups (independent samples test), the student’s T-Test 
or its non-parametric equivalent will be used. Multi-
ple regression analysis will be conducted to address 

the influence of baseline characteristics. An analysis of 
covariance (ANCOVA) will be carried out when baseline 
differences need to be controlled, being the group (inter-
vention/control) the independent variable, and the covar-
iates the baseline characteristics and demographic data. 
To test how the MedDiet + pattern influences the study 
endpoints, a multivariate analysis of covariance (MAN-
COVA) will be conducted to assess group differences 
with multiple dependent variables and adjusting for con-
founding factors. The existence of a control group allows 
for statistical comparisons between groups and ensures 
the true effectiveness of the MedDiet + when adjusting 
for potential confounders.

Discussion
Treat-to-target strategies have undoubtedly changed 
the paradigm of RA disease control and progression, 
significantly improving patient-related outcomes. How-
ever, despite the success of these novel treatment strat-
egies, there are still important unmet needs for more 

Fig. 2 – Overview of the data collection throughout the trial. Visual representation of the specific variables to be collected in each phase 
of the study, which are identical at baseline and at the end of the trial (12th week) for both groups. Only the intervention group (MedDiet +) 
has in‑person follow‑up consultations with nutritional assessment at 4th and 8th weeks. *Sociodemographic and lifestyle data are also collected 
at baseline. Abbreviations: CRP: C‑reactive protein; DAS28: Disease Activity Score using 28 joint counts; ESR: Erythrocyte sedimentation rate; 
HAQ: Health Assessment Questionnaire; I‑FABP: Intestinal‑fatty acid binding protein; LPS: Lipopolysaccharides; PREDIMED: Prevención con Dieta 
Mediterránea; SF36: 36‑Item Short Form Health Survey
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effective treatment of RA. As full remission is challeng-
ing to achieve and sustain, both patients and clinicians 
are continuously looking for adjuvant therapies that may 
contribute to improving patients’ overall well-being and 
quality of life. This study aims to investigate whether a 
nutritional intervention based on a MedDiet style pat-
tern, enriched with fermented foods, can modulate the 
gut microbiota and, as a result, influence disease activity 
and inflammatory biomarkers. With this approach, we 
expect to obtain a synergistic benefit from the various 
dietary elements, with a potential impact on both micro-
biota modulation and RA disease activity.

Over the last few years, intestinal barrier dysfunction 
has been implicated as a relevant player in the patho-
physiology of arthritis [42, 56]. Notably, the disruption of 
the gut integrity was shown to be reversible in RA [10], 
as effective biological disease-modifying antirheumatic 
drugs (bDMARDs) were shown to decrease gut perme-
ability biomarkers. In fact, RA patients exhibited altered 
colonic tight junction proteins, as well as increased 
serum biomarkers of intestinal permeability [10]. A clini-
cal response to bDMARDs in these patients correlated 
with a decrease in gut permeability markers [10]. These 
findings pave the way for the rationale that enhancing the 
gut barrier function may be a valuable mechanism for 
managing RA. The gut microbiota plays a crucial role in 
maintaining gut barrier integrity, as gut microbial metab-
olites, produced close to the gut epithelium, exert effects 
on both gut barrier function and immune responses [57]. 
Since the impairment of gut barrier function seems to be 
driven by dysbiosis [58, 59], interventions targeting the 
gut microbiota are of particular interest.

Several trials have shown that the MedDiet can posi-
tively influence gut microbiota composition [60–62]. 
For instance, Meslier et  al. [60] found that a MedDiet 
intervention resulted in microbiome changes, includ-
ing increased gene richness in individuals who achieved 
reduced systemic inflammation over the intervention 
(evaluated by serum high sensitivity CRP). A rise in 
the fibre-degrading Faecalibacterium prausnitzii, and 
a decrease in the potentially proinflammatory Rumi-
nococcus gnavus were also observed [60]. Additionally, 
according to results by Ghosh et  al. [61], adherence to 
the MedDiet was associated with an increased abun-
dance of specific taxa. which negatively correlated with 
inflammatory markers, including CRP and IL-17 [61]. Of 
interest, the operational taxonomic units that showed a 
positive increase in the intervention cohort of this trial 
(compared with the non intervention group) included 
species like Faecalibacterium prausnitzii, Eubacterium 
and Roseburia [61]. In the TASTY trial, enriching the 
traditional MedDiet with fermented foods is expected to 
further enhance gut microbiota modulation and diversity. 

On this subject, probiotics have also shown some degree 
of benefit in both animal models of arthritis and human 
studies, and fermented foods and beverages are high-
lighted as possible alternatives to probiotic supplements 
[63]. As for intestinal inflammation and permeability bio-
markers, increased adherence to the MedDiet has been 
associated with a reduction in faecal calprotectin levels in 
healthy subjects [64] and a decrease in serum zonulin and 
endotoxin levels, along with other biomarkers of oxida-
tive stress and inflammation, in patients with non-alco-
holic fatty liver disease [65]. In RA, a systematic review 
of human prospective studies reported beneficial effects 
of the MedDiet in reducing pain and improving patients’ 
physical function [66].

Although both intestinal and oral microbiota appear 
to be disturbed in RA patients, they seem to exhibit dis-
tinct behaviours. A systematic review [67] reported that 
the α-diversity of the microbiota was either decreased 
or unchanged in the gut of RA patients but increased 
or unchanged in the oral cavity. As oral and intestinal 
microbiota seem to follow distinct patterns, it is impor-
tant to access both. Recent trials have shown relevant 
associations between what we eat and oral microbiota 
composition. Using 16S rRNA amplification sequencing, 
associations were found in specific nutrient intake with 
oral microbial community diversity and richness [68]. 
Furthermore, a recent systematic review reported that 
sugar‐rich diets have a significantly unfavorable effect 
on the diversity and balance of the oral microbiota [69]. 
Interestingly, following the MedDiet has been shown to 
reduce levels of periodontopathogenic bacteria in saliva 
and, thus, may be a promising dietary strategy for main-
taining oral homeostasis [70]. Even though oral dysbiosis 
is gaining more attention in RA research, the effects of a 
nutritional intervention on its modulation remain largely 
unknown.

The MedDiet is also recognised for its anti-inflamma-
tory and antioxidant properties, attributed to specific 
components, including vitamins, carotenoids, and phe-
nolic compounds [71]. This dietary pattern also promotes 
a high intake of foods rich in PUFAs, which promote a 
balanced n-6:n-3 fatty acid ratio, and a high intake of 
extra-virgin olive oil, which is rich in monounsaturated 
fatty acids (MUFAs), influencing the expression of pro-
inflammatory genes, and the activity of immune cells 
[71]. Another relevant characteristic of the MedDiet is 
its richness in dietary fibre, which enhances microbial 
fermentation and the production of active metabolites 
such as Short Chain Fatty Acids (SCFA) in the gut, posi-
tively impacting intestinal function and integrity [16, 72]. 
On this subject, butyrate has been shown to significantly 
reduce bacterial translocation in the gut, underlining the 
relevance of a symbiotic microbiota in maintaining the 
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epithelial barrier function [73]. In individuals at increased 
risk of RA, higher serum levels of SCFA, particularly 
butyrate and acetate, were shown to be associated with 
non progression to arthritis [74]. Overall, the produc-
tion of SCFA is among the possible pathways linking gut 
microbiota dysbiosis with RA progression, together with 
other microbiome-derived metabolites, molecular mim-
icry, microbiome-induced intestinal immune responses, 
and intestinal epithelial cell autophagy [75]. Collectively, 
these dietary compounds are expected to synergistically 
contribute to the effects of the nutritional intervention.

The TASTY trial stands out for its innovative inter-
vention, combining a well-established health-promoting 
dietary pattern with specific components designed to 
promote beneficial microbiota modulation. This trial 
also includes a dynamic set of educational resources to 
improve literacy, compliance, and empower participants 
to make better food choices. Another differentiating 
characteristic of the TASTY trial is its extensive data col-
lection and comprehensive biomarker analysis.

Another strength of the TASTY study design is that the 
dietary intervention goes beyond merely providing a die-
tary plan, addressing a key limitation in previous dietary 
trials: participants’ difficulty in adhering to recommenda-
tions. Several nutritional education strategies are imple-
mented based on the "Clinical Culinary" concept to ease 
the process of changing eating habits and maximise the 
effects of the nutritional intervention. Clinical Culinary 
is a new, evidence-based component of clinical care that 
incorporates knowledge of nutrition science, including 
food and cooking, into current medical disease preven-
tion and treatment [76]. The main goal of this approach 
is to create a positive behavioural change by equipping 
patients with the knowledge and practical skills needed 
to improve their health. The systematic delivery of food 
baskets will also help ensure standardised access to the 
recommended foods, which is crucial to make sure par-
ticipants from different financial backgrounds have the 
means to successfully implement the nutritional inter-
vention. Additionally, the content of the food baskets 
provided to participants will carefully be selected by the 
registered dietitians according to the MedDiet princi-
ples, meaning that minimally processed foods will be 
chosen. For instance, plain yoghurt will be provided to 
minimise participants’ consumption of food additives, 
such as artificial sweeteners, due to their reported effects 
on gut microbiota [77]. This trial will also allow us to 
address if significant differences in dietary intake and 
clinical outcomes may be achieved by standard care that 
could be given by clinicians (control group) and to which 
degree a structured nutritional plan developed by regis-
tered dietitians (MedDiet +) implies additional benefits. 
Weaknesses of this trial include the inability to observe 

long-term effects beyond the intervention period and the 
reliance on self-reported food intake, which is suscepti-
ble to inaccuracies. However, the close follow-up during 
the intervention period, along with the educational and 
patient empowerment strategies, were designed to miti-
gate these limitations. Regarding eligibility criteria, the 
exclusion of antibiotics for only four weeks before base-
line may represent an additional limitation, as different 
treatment schemes can impact gut microbiota in distinct 
ways. The class of antibiotics, the dosage, the route of 
administration, and the characteristics of the individual 
are some of the reported mechanisms that justify the var-
ying disturbance caused by antibiotics in the microbial 
communities of the gut [78].

We believe that the results of this trial will contribute 
to identifying potential targets for both therapeutic and 
preventive approaches in RA, due to the deep exploration 
of inflammation and mucosal microbial sites. The exten-
sive data collection may contribute to the development of 
personalised treatments and change the paradigm of RA 
treatment. Our study has the potential to provide novel 
strategies to control RA activity. The results of this trial 
can contribute to establish strong scientific foundations 
for the use of diet interventions as an adjuvant therapy in 
RA, as a means to intercept the perpetuation of inflam-
mation, prevent disease progression and irreversible 
damage that deteriorates patients’ quality of life, which is 
particularly important in life-long conditions like RA.

Conclusion
The TASTY trial aims to bridge the existing gap between 
nutrition-related knowledge and disease pathogenesis 
and activity in RA. A multidisciplinary research team 
was established, including registered dietitians, rheuma-
tologists, biologists, and immunologists to evaluate this 
nutritional therapy’s impact on intestinal function and 
overall RA disease activity.
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